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Abstract: In this article, highly sensitive and low confinement loss enriching micro structured 
photonic crystal fiber (PCF) has been suggested as an optical sensor. The proposed PCF is porous 
cored hexagonal (P-HPCF) where cladding contains five layers with circular air holes and core 
vicinity is formed by two layered elliptical air holes. Two fundamental propagation characteristics 
such as the relative sensitivity and confinement loss of the proposed P-HPCF have been numerically 
scrutinized by the full vectorial finite element method (FEM) simulation procedure. The optimized 
values are modified with different geometrical parameters like diameters of circular or elliptical air 
holes, pitches of the core, and cladding region over a spacious assortment of wavelength from 0.8  m 
to 1.8 m. All pretending results exhibit that the relative sensitivity is enlarged according to 
decrement of wavelength of the transmission band (O+E+S+C+L+U). In addition, all useable liquids 
reveal the maximum sensitivity of 57.00%, 57.18%, and 57.27% for n=1.33, 1.354, and 1.366 
respectively by lower band. Moreover, effective area, nonlinear coefficient, frequency, propagation 
constant, total electric energy, total magnetic energy, and wave number in free space of the proposed 
P-HPCF have been reported recently. 
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1. Introduction 

Photonic crystal fiber (PCF) is a novel invention 
of optical fiber technology which has ensured an 
immense advancement in telecom and nonlinear 

devices applications [1]. It consists of an arbitrary 
order [2] of tiny air holes which trip along the entire 
length of the fiber or periodic array [3]. Indexed 

guiding (IG) and photonic band gap (PBG) are two 
principal types of photonic crystal fibers according 

to propagation characteristics of light. In index 
guiding (IG), PCF has sustained superior refractive 
index than the cladding region with a solid core [4, 

5]. In addition, light is instructed by photonic band 
gap principle with a large air core in PBG PCF [6]. 
In 1996, Knight et al. [7] first fabricated a 
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hexagonal-PCF structure, and this procedure was 
modernized day by day to obtain better guiding 
properties. At the present time, researchers 
attained better guiding properties to utilize an 

octagonal [2], decagonal [8], honeycomb cladding 
[9], circular, and hybrid [10] designed PCF structure. 
Due to the promotion of fabrication technologies, 

high sensitivity [11], high birefringence [12], ultra-
flattened dispersion [13], and high nonlinear effect 
[14] are achieved by scheming of PCF with altering 

the air hole diameters, pitch, and shape. 

PCF can subdue many restrictions of 

conventional fibers by following a few supplemental 

features in design such as values of pitch, air-hole 

diameter, and number of rings both the core and 

cladding. Photonic crystal fibers become extremely 

admired due to low cost, small size, robustness, 

enhanced design freedom, and flexibility. It has been 

attracted much concentration for its improvable 

performance and enormous diversity of applications 

[15]. PCF can be accustomed like as switches [16], 

electro-optical modulators [17, 18], filters [19], and 

polarization converters [20]. PCFs are guaranteed a 

revolutionary improvement in spectroscopy [21], 

super continuum generation [22], and optical 

communication [1] applications due to its singular 

characteristic. Optical sensors are updated day by 

day with the advancement of technology and a 

unique geometrical structure. 

Refractive index (RI) sensors [23], gas sensing 

[4], liquid sensors [24], pressure sensors [25], 

temperature sensors [26], mechanical sensors [27], 

chemical sensors, and PH sensors [28] are the broad 

range implementation of PCF sensors. According to 

fascinate attraction in chemical and biomedical [28, 

29] applications, the evanescent wave based PCF 

sensors are expanding quickly. The evanescent field 

of PCFs is prevalently entangled in gas sensing with 

chemical and bio sensing [28–30] and different 

index materials [23]. In addition, the bacteria sensor 

[30] is accustomed with the evanescent wave based 

PCF sensor. To subdue the safety problem in the 

industrial adaptation [31] particularly for perception 

of toxic and flammable chemicals, noble sensitive 

chemical (liquid and gas) sensors are performed a 

significant rule. PCF based sensors are also attracted 

much concentration of researchers in environmental 

and safety monitoring [23, 31] applications. 

In order to maximize the relative sensitivity and 
reduce confinement loss at adequate degree in liquid 
[24] or chemical sensing [28] applications, the 

researchers has been reported plenty of articles by 
replacing distinctive geometric parameters of the 
PCF. Lee and Asher [28] sensed echanical sensors 

[27], chemical sensors, and PH level and ionic 
strength by using a PCF based chemical sensor. In 
2001, Hansen et al. [32] reported a 
highly birefringence index guiding PCF which 

depicted a little bit higher birefringence contrast 
with conventional fibers. A hybrid-PCF structure is 
constituted by three rings cladding of circular air 

holes and micro structured core with elliptical air 
holes which depicts high birefringence, and 
sensitivity and low confinement loss was 

proposed by Asaduzzaman et al. [10]. In [33], it was 
recommended that lower confinement loss, 
dispersion, and nonlinear effect are pointed out by a 

nanostructure index guiding PCF. 
In this article, a porous cored hexagonal 

photonic crystal fiber (P-HPCF) has been suggested 

which reveals high sensitivity and low confinement 
loss for three thermo optical coefficient like water 
(n=1.330), ethanol (n=1.354), and benzene 

(n=1.366). Our proposed P-HPCF is formed by five 
layered circular air holes based cladding and two 
layered porous cored with elliptical air holes. The 

geometrical parameters have been diverse with both 
the optimized structure core and cladding territory of 
proposed P-HPCF and improved the relative 

sensitivity with low confinement loss at the same 
time compared with prior PCFs [10, 34, 35]. 

2. Geometries of the proposed P-HPCF 

The schematic cross sectional scenery of the 

proposed P-HPCF is presented in Fig. 1. In addition, 
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this figure is plainly outlined the entire geometrical 

structure of the PCF. The proposed P-HPCF 

structure is hexagonal where the core is porous 

shaped. In the cladding region, the vertices of the 

attaching air cavities contain a 60 angle that forms 

hexagonal shape. 

 

Fig. 1 Schematic cross sectional view of the proposed porous 
cored hexagonal photonic crystal fiber (P-HPCF) and enlarged 
view of its 2-layer porous core. 

The first, second, third, fourth and fifth layers 

are restrained with 6, 12, 18, 24, and 30 air cavities, 

respectively. Pitch can be determined by the 

distance between the two air holes (at cladding) for 

entire types of fibers and procedures which are 

denoted by 1 and 2. The diameters of air cavities 

in every layer of cladding are presented by d1 and d2. 

At the core territory, the vertices of the adjoining 6 

elliptical air holes of the first layer contain a 60 
angle which is arranged in a porous shape. Due to 

the second layers, the vertices of the adjoining 

elliptical air holes contain a 30 angle, and the 

number of elliptical air holes is 12. All elliptical air 

holes in the core region are arranged in a 135 angle 

perspective to original position. As a result, the 

proposed PCF design cannot be collapsed. Utilizing 

the Sellmeier equation’s [36] refractive index (n) 

and absolute silica as background, material has been 

chosen for all kinds of fibers. The diameter and pitch 

of the complementary elliptical air holes of porous 

cored are marked by dc1, dc2, and , respectively. All 

supplementary elliptical air holes are filled with 

three different thermo optic coefficients like water 

(n=1.33), ethanol (n=1.354), and benzene (n=1.366) 

respectively at the core territory. 

3. Synopsis of numerical method 

All numerical results of the proposed P-HPCF 

can be examined by applying the full vectorial finite 

element method (FEM). To model and improve 

photonic ingredients or devices for engineers, 

perfectly matched layers (PML) boundary condition 

is referred as the most effective numerical approach 

[37–41]. According to the boundary condition, PML 

is fixed at 10% of the entire diameter of the 

proposed P-HPCF [42]. The thickness of circular 

PML is chosen as 1.1 m. The propagation 

characteristics such as relative sensitivity and the 

confinement loss are obtained from Maxwell’s 

equations [43]. 

The power of light can be infiltrated of the 

cladding territory from the core because the finite 

number of air cavities of a photonic crystal fiber is 

considered as the confinement loss which is 

denoted by Lc. Kaneshima et al. [44] expressed the 

confinement loss (dB/m) by 

    Lc  = 8.68k0Im [neff]                          (1) 

where k0=2;  is the wavelength of light, and 

Im[neff] is known as the imaginary part of the 

refractive index. The relative sensitivity coefficient r 

can be computed by the mutual action between light 

and the analyte [45]. To estimate the relative 

sensitivity, coefficient r is enforced by the following 

equation: 

 
eff

rn
r f

n
                                  (2) 

where nr and neff are marked as the refractive index 

of sensed material within the air cavities and the 

modal effective index. The fraction of air cavity 

power and the absolute power percentage can be 

calculated through (3) and represented by f: 
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where Ex and Hx represent the diagonal electric field 
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and magnetic field. Ey and Hy represent the 

longitudinal electric field and magnetic field. The 

FEM is implemented to procure the mode field 

pattern Ex, Hx, Ey, Hy, and formal effective index neff 

correspondingly. The effective area Aeff [46] of a 

PCF can be calculated by the following equation: 

 22

eff 4

E dxdy
A

E dxdy


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                      (4) 

where optical power is denoted by E. A small 

effective area is caused for high optical power 
density which also indicates the nonlinear effect. 
Equation (5) is utilized to calculate the nonlinear 

coefficient () [46] 

 2 2
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2
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    

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where C, n, and  present the velocity, frequency, 

and wavelength of light, respectively. The nonlinear-

index coefficient n2 in the nonlinear part of the 

refractive index is n = n2|E|2.   

4. Numerical results and discussion 

In this section, the guiding properties of the 

reported P-HPCF have been examined in agreement 
with assorted geometrical parameters. The 
complementary elliptical air cavities of core region 

is satiated by three thermo optic coefficients such as 
water (n=1.330), ethanol (n=1.354), and benzene 
(n=1.366). Numerical investigation into the P-HPCF 

has been carried out at a wide range of wavelength 
from 0.8 m to 1.8 m. The extensive pretending 
procedure has been performed by COMSOL 

Multiphysics 4.2 versions. The convergence error of 
the proposed P-HPCF is very low which is 
approximately at 1.5010–8% for the optimum 

parameters.   
The electric field distributions for (a) x-

polarization and (b) y-polarization at an activation 

wavelength of 1.33 m have been presented in Fig.  2. 
The mode field is firmly restricted in the core 
vicinity which increases the sensitivity of the 

proposed P-HPCF. As a result, the leakage loss of 
the fiber is very low. 

 
                             (a)                                       (b) 

Fig. 2 Optical field distribution of the proposed P-HPCF:    
(a) x-polarization and (b) y-polarization for ethanol (n=1.354) at 
=1.33 m. 
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Fig. 3 Variation of the relative sensitivity versus wavelength 

of the proposed P-HPCF when all parameters are kept optimum.  

Figure 3 reveals the influence on relative 

sensitivity of the proposed P-HPCF for the optimum 

values. This figure also indicates that the sensitivity 

is increased with the decrement of wavelength. The 

proposed P-HPCF shows conflict result compared 

with those shown in [10, 34, 35] due to the fact that 

those articles achieved high sensitivity with the 

increment of wavelength. The relative sensitivity of 

proposed P-HPCF is 57%, 57.18%, and 57.27%, 

respectively for three liquids like water (n=1.330), 

ethanol (n=1.354) and benzene (n=1.366) at 1.33 m 

wavelength. Besides, confinement loss of the fiber is 

2.1510–10
 dB/m, 1.1110–11

 dB/m, and          

1.9710–11
 dB/m, respectively in the same condition. 

In addition, the degree of freedom is d1=1.80 m, 

d2=1.96 m, 1=2.8 m, 2 =3 m, dc1=0.40 m, dc2= 

0.30 m, and =0.80 m for the optimum structure. 

The optimization of the proposed P-HPCF has done 

following a simple technique [35]. The first cladding 

region is optimized. 
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Fig. 4 Variation of the relative sensitivity versus wavelength 

of the P-HPCF changing the cladding diameter of +4% 
compared with the optimum value when other parameters are 
kept constant.  
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Fig. 5 Variation of the relative sensitivity versus wavelength 

of the P-HPCF changing the cladding diameter of +8% 
compared with the value when other parameters are kept 
constant.  

Figure 4 demonstrates the effect on the relative 
sensitivity to fluctuate the cladding air-hole 
diameters (d1 and d2) of +4% with the optimum 
values when other parameters are kept same for the 
proposed P-HPCF. The sensitivity of 56.52%, 
57.82%, and 57.96% and the confinement loss of 
3.1310–10

 dB/m, 5.9510–10
 dB/m, and          

2.510–10
 dB/m correspondingly have gained at   

1.33 m wavelength. Now it is clearly visualized 
that sensitivity has increased for two liquids except 
water (n=1.330) compared with the optimum value. 

Figure 5 shows the impact on the relative 
sensitivity, +8% variation with the optimum values 
of cladding air-hole diameters (d1 and d2) when 

other parameters have remained constant for the 
proposed P-HPCF. The sensitivity of 58.37%, 
58.51%, and 58.59% accordingly has been reported 
for three analytes at 1.33 m wavelength which is 
little bit high compared with the optimum value. 
Besides, the confinement loss of the order of 
1.9210–9dB/m, 5.8010–11

 dB/m, and          
4.7910–11

 dB/m accordingly has also been achieved 
for desired liquids but it is also high compared with 
the optimum value. Same results have been found 
for +12% increment of cladding diameters which is 
shown in Fig. 6. 
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Fig. 6 Variation of the relative sensitivity versus wavelength 

of the P-HPCF changing the cladding diameter of +12% 
compared with the optimum value when other parameters are 
kept constant.  

All examined results are shown in Figs. 4, 5, and 

6. It has been signified that relative sensitivity of the 

proposed P-HPCF is enlarged when we increase the 

values of d1 and d2 with the optimum value. .But to 

avoid fabrication complexity, d1=1.80 m and d2=     

1.96 m have been selected as an optimum value in 

the cladding region.  

Figure 7 demonstrates the influence on the 

relative sensitivity for decreasing the cladding air-

hole diameters (d1 and d2) of –4% with the optimum 

values when other parameters are remained the same 

for the proposed P-HPCF. The sensitivity of 56.23%, 

56.43%, and 56.52% and confinement loss of   

1.9210–9
 dB/m, 5.8010–11

 dB/m, and          

4.7910–11
 dB/m respectively have been achieved at 

1.33 m wavelength. Now it is clearly visualized 
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that sensitivity has decreased due to –4% variations 

with the optimum value for three liquids. Similar 

results have been found for –8% decrement of 

cladding diameters in Fig. 8. 
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Fig. 7 Variation of the relative sensitivity versus wavelength 
of the P-HPCF changing the cladding diameter of –4% 
compared with the optimum value when other parameters are 
kept constant.  
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Fig. 8 Variation of the relative sensitivity versus wavelength 
of the P-HPCF changing the cladding diameter of –8% 
compared with the optimum value when other parameters are 
kept constant.  

After completing all investigations from Figs. 7 

and 8, it has been indicated that propagation 

characteristics like sensitivity of the reported P-

HPCF is diminished due to a decrease in the 

optimum values of cladding air-hole diameters (d1 

and d2). Next the core territory is optimized. 

Figure 9 represents the effect on the relative 

sensitivity of the proposed P-HPCF for 

interchanging the air-hole diameters (dc1 and dc2) of 

core vicinity with the optimum values. After 

completing this procedure, the sensitivity and 

confinement loss are turned into little bit changes. 

The sensitivity of 56.90%, 57.19%, and 57.14% and 

confinement loss of 2.7910–10
 dB/m,            

4.3910–10
 dB/m, and 1.8110–11

 dB/m 

correspondingly are obtained at 1.33 m wavelength 

for three thermo optic coefficients. Since the relative 

sensitivity is slightly decreased with exchanging 

core air-hole diameters, dc1=0.40 m and dc2=     

0.30 
 m are chosen as the optimum values of air-

hole diameters in the core region.  
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Fig. 9 Variation of the relative sensitivity versus wavelength 

of the P-HPCF interchanging the core vicinity air-hole 
diameters when other parameters are kept constant. 
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Fig. 10 Variation of the relative sensitivity versus 

wavelength of the P-HPCF due to different values of core pitch 
 when other parameters are remained same for n=1.33. 
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Fig. 11 Variation of the relative sensitivity versus 

wavelength of the P-HPCF due to different values of core pitch 
 when other parameters are remained same for n=1.354. 
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Fig. 12 Variation of the relative sensitivity versus 

wavelength of the P-HPCF due to different values of core pitch 
 when other parameters are remained the same for n=1.366. 

Figure 10 indicates the impact on the relative 

sensitivity of proposed P-HPCF for distinctive 

values of core pitch  when applied liquid is water 

(n=1.330). The sensitivities of 58.06%, 57.00%, 

54.82%, 53.80%, 52.90%, and 51.90% 

correspondingly have been attained due to =     

0.79 m, 0.80  m, 0.82 m, 0.83 m, 0.84 m, and 

0.85 m at 1.33  m wavelength. In addition, the 

confinement losses of 4.3210–11
 dB/m,        

2.1510–10
 dB/m, 1.4610–10

 dB/m, 7.2210–10
 dB/m, 

5.9610–12
 dB/m, and 3.1210–11

 dB/m accordingly 

have been gained for similar requirements.   

After finishing all examinations from Figs. 10, 

11, and 12, it has been revealed that the high relative 

sensitivity and low confinement loss are achieved 

for =0.79 m due to applying three chemicals like 

water (n=1.330), ethanol (n=1.354), and benzene 

(n=1.366) at 1.33 m wavelength. To evade cost and 

complexity during the fabrication process, =     

0.80 m is selected as the optimum pitch value of 

the core vicinity.  

In a selective manner, filling the air holes of 
photonic crystal fiber by analytes is referred as a 
dare job. The air cavities of PCF in either the core or 

cladding region can be satiated by distinctive 
analytes with the progress of nanotechnology. A 
number of technical skills have been reported by the 

researchers. In 2004, Huang et al. [47] proposed a 
unique technique to fill the micro structured air 
cavities of both the core and cladding vicinities with 

distinctive analytes which may be accustomed to 
reveal the functionality of the PCF applications. This 
filling adaptation takes place by compelling the 
ultraviolet-curable polymer within the PCF. Zhang 

et al. [48] suggested a method for practical 
exhibition and speculate pretending of a liquid filled 
core based PCF to improve the sensing application. 

All investigated results in Table 1 have been 
manifestly indicated that the relative sensitivity and 
confinement loss are slightly varied with the 

optimum parameters after all modifications. So we 
confirmed that no global effects can influence the 
reported structure afterwards the fabrication process.   

We have also examined the optimum parameters 
of 1% and 2% replacement as global parameters 
of the proposed P-HPCF. Comparison of relative 

sensitivity and confinement loss among the optimum 
parameters and the change in global parameters for 
water (n=1.330), ethanol (n=1.354), and benzene 

(n=1.366) at =1.33 m has been revealed in Table 1. 
Table 2 demonstrates the comparison of the effective 
area and nonlinear coefficient of the optimum P-

HPCF structure for three applied liquids such as 
water, ethanol, and benzene at =1.33 m. 

Several numbers of guiding attributes like 

frequency, propagation constant, total electric energy, 
total magnetic energy, and wave number in the free 
space of the proposed P-HPCF have been shown in 

Table 3. After completing the calculation process, it 
has been seen that propagation constant, total 
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electric energy, and total magnetic energy are 
changed with different refractive index chemicals 
such as water (n =1.330), ethanol (n=1.354), 
and benzene (n=1.366) except frequency and wave 

number in the free space. 
Table 1 Comparison among the optimum parameters and the 

change in global parameters at  =1.33 m. 

Relative sensitivity (%) Confinement loss (dB/m) Change in global 
parameters (%) n=1.33 n=1.354 n=1.366 n=1.33 n=1.354 n=1.366

+2% 57.99 57.24 57.32 6.841010 2.011010 2.841010

+1% 56.93 57.21 58.16 1.21109 3.421010 8.161011

Optimum 57.00 57.18 57.27 2.151010 1.111011 1.971011

1% 56.87 57.16 57.24 1.221010 8.311010 1.361010

2% 57.79 57.13 47.79 3.98109 1.901011 3.98109

Table 2 Numerical values of effective area and nonlinear 
coefficient of the optimum P-HPCF structure at =1.33 m. 

Chemical (n) Effective area (µm2) Nonlinear coefficient (W1km1)

Water (n=1.330) 11.99 11.82 
Ethanol (n=1.354) 11.85 11.95 
Benzene (n=1.366) 11.78 12.02 

Table 3 Different guiding values of the optimum P-HPCF 
structure at =1.33 m. 

Investigation parameters Water Ethanol Benzene 

Frequency (Hz) 2.251014 2.251014 2.251014

Propagation constant (rad/m) 6.21106 6.32106 6.38106

Total electric energy (J) 1.67107 1.74107 1.77107

Total magnetic energy (J) 1.67107 1.74107 1.77107

Wave number in free space (rad/m) 4.72106 4.72106 4.72106

 
The comparative performance analysis between 

the prior PCFs and proposed P-HPCF has been 
listed in Table 4. Comparing with the prior PCFs, 
our proposed PCF depicts upward relative 

sensitivity and low confinement for ethanol 
(n=1.354) analytes. The proposed P-HPCF is nobly 
improved the relative sensitivity approximately 2.41, 

1.30, and 1.16 times compared with the previous 
PCFs [34], [35], and [10] respectively as well as 
diminishing the confinement loss from [34] and [10]. 

Table 4 Comparison of simulated result and structural shape 
among proposed P-HPCF and prior PCFs at =1.33m for 
n=1.354. 

Structural shape 
PCFs Sen. (%) 

Con. loss 
(dB/m) 

No. of 
ring Core Cladding 

Prior 
PCF1 [34] 

23.75 2.40104 3 Elliptical holes 
Circular holes 
in octagonal 

Prior 
PCF2 [35] 

46. 87 2.281014 5 Circular holes 
Circular holes 
in octagonal 

Prior 
PCF3 [10] 

49.17 2.751010 3 Elliptical holes 
Circular holes 

in circular 

Pro. PCF 57.18 1.111011 5 
Elliptical holes 

in porous 
Circular holes 
in hexagonal

The fabrication procedure is a significant topic 

for all proposed photonic crystal fibers. So the 

fabrication process of the proposed P-HPCF may be 

not comfortable. The proposed P-HPCF includes 

two different types of holes in cladding regions. Due 

to the technological progress in the fabrication of 

PCFs, our reported structure can be feasibly 

fabricated. Various fabrication techniques have been 

advanced for micro structured PCF like extrusion 

[49], stack and draw [50], drilling [51], and sol-gel 

casting [52]. Extrusion method contributes 

exemption in design. To utilize this method, material 

losses are extremely high for soft glasses, which is 

regarded as key drawback of this technique. The 

drilling technique allows fitting both the holes size 

and spacing. But circular shape fiber is restricted to 

drilling technique. In 2012, Hamzaoui et al. [52] 

fabricated an ionic copper-doped micro structured 

optical fiber by a new fabrication method which is 

renowned as a sol-gel technique. This method 

provides the freedom to modify air holes size, shape, 

and pitches. So, the proposed P-HPCF will be 

successfully fabricated by sol-gel casting technique. 

5. Conclusions 

A micro structured porous cored hexagonal 

photonic crystal fiber (P-HPCF) formed by five 

layered cladding embracing circular air holes and 

two layered porous coredwith elliptical air holes is 

reported in this paper. The proposed P-HPCF is 

accustomed as a chemical sensor. The FEM and 

PML circular boundary conditions are enforced for 

numerically investigated variation of effects on 

propagation characteristics of the proposed P-HPCF. 

All examined outcomes show that the proposed P-

HPCF exposes decent sensitivity and lower 

confinement loss compared with the prior PCFs at a 

wide scope of wavelength from 0.8 m to 1.8 m. 

The proposed PCF reveals the relative sensitivity 

57.00%, 57.18%, and 57.27% correspondingly for 

water (n=1.33), ethanol (n=1.354), and benzene 

(n=1.366) analytes. In addition, the confinement 
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losses of 2.1510–10
 dB/m, 1.1110–11

 dB/m, and 

1.9710–11
 dB/m are gained for the same analytes. 

So it is apparent that the proposed P-HPCF based 

chemical sensor exhibits novel execution in 

industrial security intention at the lower band. 
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